Findings

Out of the muck

Kevin Lewis

June 10, 2018

Inference of ecological and social drivers of human brain-size evolution
Mauricio González-Forero & Andy Gardner
Nature, 24 May 2018, Pages 554–557

Abstract:
The human brain is unusually large. It has tripled in size from Australopithecines to modern humans and has become almost six times larger than expected for a placental mammal of human size. Brains incur high metabolic costs and accordingly a long-standing question is why the large human brain has evolved. The leading hypotheses propose benefits of improved cognition for overcoming ecological, social or cultural challenges. However, these hypotheses are typically assessed using correlative analyses, and establishing causes for brain-size evolution remains difficult. Here we introduce a metabolic approach that enables causal assessment of social hypotheses for brain-size evolution. Our approach yields quantitative predictions for brain and body size from formalized social hypotheses given empirical estimates of the metabolic costs of the brain. Our model predicts the evolution of adult Homo sapiens-sized brains and bodies when individuals face a combination of 60% ecological, 30% cooperative and 10% between-group competitive challenges, and suggests that between-individual competition has been unimportant for driving human brain-size evolution. Moreover, our model indicates that brain expansion in Homo was driven by ecological rather than social challenges, and was perhaps strongly promoted by culture. Our metabolic approach thus enables causal assessments that refine, refute and unify hypotheses of brain-size evolution.


Global genetic differentiation of complex traits shaped by natural selection in humans
Jing Guo et al.
Nature Communications, May 2018

Abstract:
There are mean differences in complex traits among global human populations. We hypothesize that part of the phenotypic differentiation is due to natural selection. To address this hypothesis, we assess the differentiation in allele frequencies of trait-associated SNPs among African, Eastern Asian, and European populations for ten complex traits using data of large sample size (up to ~405,000). We show that SNPs associated with height (P=2.46×10−5), waist-to-hip ratio (P=2.77×10−4), and schizophrenia (P=3.96×10−5) are significantly more differentiated among populations than matched “control” SNPs, suggesting that these trait-associated SNPs have undergone natural selection. We further find that SNPs associated with height (P=2.01×10−6) and schizophrenia (P=5.16×10−18) show significantly higher variance in linkage disequilibrium (LD) scores across populations than control SNPs. Our results support the hypothesis that natural selection has shaped the genetic differentiation of complex traits, such as height and schizophrenia, among worldwide populations.


The coevolution of cooperation and cognition in humans
Miguel dos Santos & Stuart West
Proceedings of the Royal Society: Biological Sciences, 30 May 2018

Abstract:
Cooperative behaviours in archaic hunter–gatherers could have been maintained partly due to the gains from cooperation being shared with kin. However, the question arises as to how cooperation was maintained after early humans transitioned to larger groups of unrelated individuals. We hypothesize that after cooperation had evolved via benefits to kin, the consecutive evolution of cognition increased the returns from cooperating, to the point where benefits to self were sufficient for cooperation to remain stable when group size increased and relatedness decreased. We investigate the theoretical plausibility of this hypothesis, with both analytical modelling and simulations. We examine situations where cognition either (i) increases the benefits of cooperation, (ii) leads to synergistic benefits between cognitively enhanced cooperators, (iii) allows the exploitation of less intelligent partners, and (iv) the combination of these effects. We find that cooperation and cognition can coevolve — cooperation initially evolves, favouring enhanced cognition, which favours enhanced cooperation, and stabilizes cooperation against a drop in relatedness. These results suggest that enhanced cognition could have transformed the nature of cooperative dilemmas faced by early humans, thereby explaining the maintenance of cooperation between unrelated partners.


Lead pollution recorded in Greenland ice indicates European emissions tracked plagues, wars, and imperial expansion during antiquity
Joseph McConnell et al.
Proceedings of the National Academy of Sciences, 29 May 2018, Pages 5726-5731

Abstract:
Lead pollution in Arctic ice reflects midlatitude emissions from ancient lead–silver mining and smelting. The few reported measurements have been extrapolated to infer the performance of ancient economies, including comparisons of economic productivity and growth during the Roman Republican and Imperial periods. These studies were based on sparse sampling and inaccurate dating, limiting understanding of trends and specific linkages. Here we show, using a precisely dated record of estimated lead emissions between 1100 BCE and 800 CE derived from subannually resolved measurements in Greenland ice and detailed atmospheric transport modeling, that annual European lead emissions closely varied with historical events, including imperial expansion, wars, and major plagues. Emissions rose coeval with Phoenician expansion, accelerated during expanded Carthaginian and Roman mining primarily in the Iberian Peninsula, and reached a maximum under the Roman Empire. Emissions fluctuated synchronously with wars and political instability particularly during the Roman Republic, and plunged coincident with two major plagues in the second and third centuries, remaining low for >500 years. Bullion in silver coinage declined in parallel, reflecting the importance of lead–silver mining in ancient economies. Our results indicate sustained economic growth during the first two centuries of the Roman Empire, terminated by the second-century Antonine plague.


Deglaciation of the Pacific coastal corridor directly preceded the human colonization of the Americas
Alia Lesnek et al.
Science Advances, May 2018

Abstract:
The route and timing of early human migration to the Americas have been a contentious topic for decades. Recent paleogenetic analyses suggest that the initial colonization from Beringia took place as early as 16 thousand years (ka) ago via a deglaciated corridor along the North Pacific coast. However, the feasibility of such a migration depends on the extent of the western Cordilleran Ice Sheet (CIS) and the available resources along the hypothesized coastal route during this timeframe. We date the culmination of maximum CIS conditions in southeastern Alaska, a potential bottleneck region for human migration, to ~20 to 17 ka ago with cosmogenic 10Be exposure dating and 14C dating of bones from an ice-overrun cave. We also show that productive marine and terrestrial ecosystems were established almost immediately following deglaciation. We conclude that CIS retreat ensured that an open and ecologically viable pathway through southeastern Alaska was available after 17 ka ago, which may have been traversed by early humans as they colonized the Americas.


Ancient genomes from Iceland reveal the making of a human population
Sunna Ebenesersdóttir et al.
Science, 1 June 2018, Pages 1028-1032

Abstract:
Opportunities to directly study the founding of a human population and its subsequent evolutionary history are rare. Using genome sequence data from 27 ancient Icelanders, we demonstrate that they are a combination of Norse, Gaelic, and admixed individuals. We further show that these ancient Icelanders are markedly more similar to their source populations in Scandinavia and the British-Irish Isles than to contemporary Icelanders, who have been shaped by 1100 years of extensive genetic drift. Finally, we report evidence of unequal contributions from the ancient founders to the contemporary Icelandic gene pool. These results provide detailed insights into the making of a human population that has proven extraordinarily useful for the discovery of genotype-phenotype associations.


Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution
Jack Longman et al.
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
The Balkans are considered the birthplace of mineral resource exploitation and metalworking in Europe. However, since knowledge of the timing and extent of metallurgy in southeastern Europe is largely constrained by discontinuous archaeological findings, the long-term environmental impact of past mineral resource exploitation is not fully understood. Here, we present a high-resolution and continuous geochemical record from a peat bog in western Serbia, providing a clear indication of the extent and magnitude of environmental pollution in this region, and a context in which to place archaeological findings. We observe initial evidence of anthropogenic lead (Pb) pollution during the earliest part of the Bronze Age [∼3,600 years before Common Era (BCE)], the earliest such evidence documented in European environmental records. A steady, almost linear increase in Pb concentration after 600 BCE, until ∼1,600 CE is observed, documenting the development in both sophistication and extent of southeastern European metallurgical activity throughout Antiquity and the medieval period. This provides an alternative view on the history of mineral exploitation in Europe, with metal-related pollution not ceasing at the fall of the western Roman Empire, as was the case in western Europe. Further comparison with other Pb pollution records indicates the amount of Pb deposited in the Balkans during the medieval period was, if not greater, at least similar to records located close to western European mining regions, suggestive of the key role the Balkans have played in mineral resource exploitation in Europe over the last 5,600 years.


Ancient human parallel lineages within North America contributed to a coastal expansion
C.L. Scheib et al.
Science, 1 June 2018, Pages 1024-1027

Abstract:
Little is known regarding the first people to enter the Americas and their genetic legacy. Genomic analysis of the oldest human remains from the Americas showed a direct relationship between a Clovis-related ancestral population and all modern Central and South Americans as well as a deep split separating them from North Americans in Canada. We present 91 ancient human genomes from California and Southwestern Ontario and demonstrate the existence of two distinct ancestries in North America, which possibly split south of the ice sheets. A contribution from both of these ancestral populations is found in all modern Central and South Americans. The proportions of these two ancestries in ancient and modern populations are consistent with a coastal dispersal and multiple admixture events.


Earliest evidence for equid bit wear in the ancient Near East: The "ass" from Early Bronze Age Tell eṣ-Ṣâfi/Gath, Israel
Haskel Greenfield et al.
PLoS ONE, May 2018

Abstract:
Analysis of a sacrificed and interred domestic donkey from an Early Bronze Age (EB) IIIB (c. 2800–2600 BCE) domestic residential neighborhood at Tell eṣ-Ṣâfi/Gath, Israel, indicate the presence of bit wear on the Lower Premolar 2 (LPM2). This is the earliest evidence for the use of a bit among early domestic equids, and in particular donkeys, in the Near East. The mesial enamel surfaces on both the right and left LPM2 of the particular donkey in question are slightly worn in a fashion that suggests that a dental bit (metal, bone, wood, etc.) was used to control the animal. Given the secure chronological context of the burial (beneath the floor of an EB IIIB house), it is suggested that this animal provides the earliest evidence for the use of a bit on an early domestic equid from the Near East.


Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.