Findings

Burned

Kevin Lewis

October 05, 2016

A Note on the Perverse Effects of Actively Open-Minded Thinking on Climate-Change Polarization

Dan Kahan & Jonathan Corbin

Research & Politics, forthcoming

Abstract:
This research note presents evidence that political polarization over the reality of human-caused climate change increases in tandem with individuals’ scores on a standard measure of Actively Open-minded Thinking. This finding is at odds with the position that attributes political conflict over facts to a personality trait of closed-mindedness associated with political conservatism.

---------------------

Green Expectations: Current Effects of Anticipated Carbon Pricing

Derek Lemoine

Review of Economics and Statistics, forthcoming

Abstract:
I report evidence that an anticipated strengthening of environmental policy increased emissions. I find that the breakdown of the U.S. Senate's 2010 climate effort generated positive excess returns in coal futures markets. This response appears to be driven by an increase in coal storage. The proposed legislation aimed to reduce U.S. greenhouse gas emissions after 2013, but the legislative process itself may have increased emissions by over 12 million tons of carbon dioxide leading up to April 2010.

---------------------

Quantifying expert consensus against the existence of a secret, large-scale atmospheric spraying program

Christine Shearer et al.

Environmental Research Letters, August 2016

Abstract:
Nearly 17% of people in an international survey said they believed the existence of a secret large-scale atmospheric program (SLAP) to be true or partly true. SLAP is commonly referred to as 'chemtrails' or 'covert geoengineering', and has led to a number of websites purported to show evidence of widespread chemical spraying linked to negative impacts on human health and the environment. To address these claims, we surveyed two groups of experts — atmospheric chemists with expertize in condensation trails and geochemists working on atmospheric deposition of dust and pollution — to scientifically evaluate for the first time the claims of SLAP theorists. Results show that 76 of the 77 scientists (98.7%) that took part in this study said they had not encountered evidence of a SLAP, and that the data cited as evidence could be explained through other factors, including well-understood physics and chemistry associated with aircraft contrails and atmospheric aerosols. Our goal is not to sway those already convinced that there is a secret, large-scale spraying program — who often reject counter-evidence as further proof of their theories — but rather to establish a source of objective science that can inform public discourse.

---------------------

Price of Long-Run Temperature Shifts in Capital Markets

Ravi Bansal, Dana Kiku & Marcelo Ochoa

NBER Working Paper, August 2016

Abstract:
We use the forward-looking information from the US and global capital markets to estimate the economic impact of global warming, specifically, long-run temperature shifts. We find that global warming carries a positive risk premium that increases with the level of temperature and that has almost doubled over the last 80 years. Consistent with our model, virtually all US equity portfolios have negative exposure (beta) to long-run temperature fluctuations. The elasticity of equity prices to temperature risks across global markets is significantly negative and has been increasing in magnitude over time along with the rise in temperature. We use our empirical evidence to calibrate a long-run risks model with temperature-induced disasters in distant output growth to quantify the social cost of carbon emissions. The model simultaneously matches the projected temperature path, the observed consumption growth dynamics, discount rates provided by the risk-free rate and equity market returns, and the estimated temperature elasticity of equity prices. We find that the long-run impact of temperature on growth implies a significant social cost of carbon emissions.

---------------------

Independent evaluation of point source fossil fuel CO2 emissions to better than 10%

Jocelyn Christine Turnbull et al.

Proceedings of the National Academy of Sciences, 13 September 2016, Pages 10287–10291

Abstract:
Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 (14CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric 14CO2. These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions.

---------------------

Future hurricane storm surge risk for the U.S. gulf and Florida coasts based on projections of thermodynamic potential intensity

Karthik Balaguru, David Judi & Ruby Leung

Climatic Change, September 2016, Pages 99–110

Abstract:
Coastal populations in the global tropics and sub-tropics are vulnerable to the devastating impacts of hurricane storm surge and this risk is only expected to rise under climate change. In this study, we address this issue for the U.S. Gulf and Florida coasts. Using the framework of Potential Intensity, observations and output from coupled climate models, we show that the future large-scale thermodynamic environment may become more favorable for hurricane intensification. Under the RCP 4.5 emissions scenario and for the peak hurricane season months of August–October, we show that the mean intensities of Atlantic hurricanes may increase by 1.8–4.2 % and their lifetime maximum intensities may increase by 2.7–5.3 % when comparing the last two decades of the 20th and 21st centuries. We then combine our estimates of hurricane intensity changes with projections of sea-level rise to understand their relative impacts on future storm surge using simulations with the National Weather Service’s SLOSH (Sea, Lake, and Overland Surges from Hurricanes) model for five historical hurricanes that made landfall in the Gulf of Mexico and Florida. Considering uncertainty in hurricane intensity changes and sea-level rise, our results indicate a median increase in storm surge ranging between 25 and 47 %, with changes in hurricane intensity increasing future storm surge by about 10 % relative to the increase that may result from sea level rise alone, with highly non-linear response of population at risk.

---------------------

Ambiguity, Reasoned Determination, and Climate-Change Policy

Robert Chambers & Tigran Melkonyan

Journal of Environmental Economics and Management, forthcoming

Abstract:
This paper examines climate-change benefit-cost analysis in the presence of scientific uncertainty in the form of ambiguity. The specific issue addressed is the robustness of benefit-cost analyses of climate-change policy alternatives to relaxation of Savage's original axioms. Two alternatives to subjective expected utility (SEU) are considered: maximin expected utility (MEU) and incomplete expected utility (IEU). Among other results, it is demonstrated that polar opposite recommendations can emerge in an ambiguous decision setting even if all agree on Society's rate of time preference, Society's risk attitudes, the degree of ambiguity faced, and the scientific primitives. We show that, for a simple numerical simulation of our model, an MEU decision maker favors policies which immediately tackle climate change while an IEU decision prefers “business as usual”.

---------------------

Simulating the Earth system response to negative emissions

C.D. Jones et al.

Environmental Research Letters, September 2016

Abstract:
Natural carbon sinks currently absorb approximately half of the anthropogenic CO2 emitted by fossil fuel burning, cement production and land-use change. However, this airborne fraction may change in the future depending on the emissions scenario. An important issue in developing carbon budgets to achieve climate stabilisation targets is the behaviour of natural carbon sinks, particularly under low emissions mitigation scenarios as required to meet the goals of the Paris Agreement. A key requirement for low carbon pathways is to quantify the effectiveness of negative emissions technologies which will be strongly affected by carbon cycle feedbacks. Here we find that Earth system models suggest significant weakening, even potential reversal, of the ocean and land sinks under future low emission scenarios. For the RCP2.6 concentration pathway, models project land and ocean sinks to weaken to 0.8 ± 0.9 and 1.1 ± 0.3 GtC yr−1 respectively for the second half of the 21st century and to −0.4 ± 0.4 and 0.1 ± 0.2 GtC yr−1 respectively for the second half of the 23rd century. Weakening of natural carbon sinks will hinder the effectiveness of negative emissions technologies and therefore increase their required deployment to achieve a given climate stabilisation target. We introduce a new metric, the perturbation airborne fraction, to measure and assess the effectiveness of negative emissions.

---------------------

Early onset of industrial-era warming across the oceans and continents

Nerilie Abram et al.

Nature, 25 August 2016, Pages 411–418

Abstract:
The evolution of industrial-era warming across the continents and oceans provides a context for future climate change and is important for determining climate sensitivity and the processes that control regional warming. Here we use post-AD 1500 palaeoclimate records to show that sustained industrial-era warming of the tropical oceans first developed during the mid-nineteenth century and was nearly synchronous with Northern Hemisphere continental warming. The early onset of sustained, significant warming in palaeoclimate records and model simulations suggests that greenhouse forcing of industrial-era warming commenced as early as the mid-nineteenth century and included an enhanced equatorial ocean response mechanism. The development of Southern Hemisphere warming is delayed in reconstructions, but this apparent delay is not reproduced in climate simulations. Our findings imply that instrumental records are too short to comprehensively assess anthropogenic climate change and that, in some regions, about 180 years of industrial-era warming has already caused surface temperatures to emerge above pre-industrial values, even when taking natural variability into account.

---------------------

High-income does not protect against hurricane losses

Tobias Geiger, Katja Frieler & Anders Levermann

Environmental Research Letters, August 2016

Abstract:
Damage due to tropical cyclones accounts for more than 50% of all meteorologically-induced economic losses worldwide. Their nominal impact is projected to increase substantially as the exposed population grows, per capita income increases, and anthropogenic climate change manifests. So far, historical losses due to tropical cyclones have been found to increase less than linearly with a nation's affected gross domestic product (GDP). Here we show that for the United States this scaling is caused by a sub-linear increase with affected population while relative losses scale super-linearly with per capita income. The finding is robust across a multitude of empirically derived damage models that link the storm's wind speed, exposed population, and per capita GDP to reported losses. The separation of both socio-economic predictors strongly affects the projection of potential future hurricane losses. Separating the effects of growth in population and per-capita income, per hurricane losses with respect to national GDP are projected to triple by the end of the century under unmitigated climate change, while they are estimated to decrease slightly without the separation.

---------------------

What Would it Take to Reduce US Greenhouse Gas Emissions 80% by 2050?

Geoffrey Heal

NBER Working Paper, August 2016

Abstract:
I investigate the cost and feasibility of reducing US GHG emissions by 80% from 2005 levels by 2050. The US has stated in its Paris COP 21 submission that this is its aspiration, and Hillary Clinton has chosen this as one of the goals of her climate policy. I suggest that this goal can be reached at a cost in the range of $42 to $176 bn/year, but that it is challenging. I assume that the goal is to be reached by extensive use of solar PV and wind energy (66% of generating capacity), in which case the cost of energy storage plays a key role in the overall cost. I conclude tentatively that more limited use of renewables (less than 50%) together with increased use of nuclear power might be less costly.

---------------------

The climate response to five trillion tonnes of carbon

Katarzyna Tokarska et al.

Nature Climate Change, September 2016, Pages 851–855

Abstract:
Concrete actions to curtail greenhouse gas emissions have so far been limited on a global scale, and therefore the ultimate magnitude of climate change in the absence of further mitigation is an important consideration for climate policy. Estimates of fossil fuel reserves and resources are highly uncertain, and the amount used under a business-as-usual scenario would depend on prevailing economic and technological conditions. In the absence of global mitigation actions, five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions. An approximately linear relationship between global warming and cumulative CO2 emissions is known to hold up to 2 EgC emissions on decadal to centennial timescales; however, in some simple climate models the predicted warming at higher cumulative emissions is less than that predicted by such a linear relationship. Here, using simulations from four comprehensive Earth system models, we demonstrate that CO2-attributable warming continues to increase approximately linearly up to 5 EgC emissions. These models simulate, in response to 5 EgC of CO2 emissions, global mean warming of 6.4–9.5 °C, mean Arctic warming of 14.7–19.5 °C, and mean regional precipitation increases by more than a factor of four. These results indicate that the unregulated exploitation of the fossil fuel resource could ultimately result in considerably more profound climate changes than previously suggested.

---------------------

Detection of anthropogenic influence on a summertime heat stress index

Thomas Knutson & Jeffrey Ploshay

Climatic Change, September 2016, Pages 25–39

Abstract:
One of the most consequential impacts of anthropogenic warming on humans may be increased heat stress, combining temperature and humidity effects. Here we examine whether there are now detectable changes in summertime heat stress over land regions. As a heat stress metric we use a simplified wet bulb globe temperature (WBGT) index. Observed trends in WBGT (1973–2012) are compared to trends from CMIP5 historical simulations (eight-model ensemble) using either anthropogenic and natural forcing agents combined or natural forcings alone. Our analysis suggests that there has been a detectable anthropogenic increase in mean summertime heat stress since 1973, both globally and in most land regions analyzed. A detectable increase is found over a larger fraction of land for WBGT than for temperature, as WBGT summertime means have lower interannual variability than surface temperature at gridbox scales. Notably, summertime WBGT over land has continued increasing in recent years -- consistent with climate models -- despite the apparent ‘hiatus’ in global warming and despite a decreasing tendency in observed relative humidity over land since the late 1990s.

---------------------

Evolution of global temperature over the past two million years

Carolyn Snyder

Nature, forthcoming

Abstract:
Reconstructions of Earth’s past climate strongly influence our understanding of the dynamics and sensitivity of the climate system. Yet global temperature has been reconstructed for only a few isolated windows of time, and continuous reconstructions across glacial cycles remain elusive. Here I present a spatially weighted proxy reconstruction of global temperature over the past 2 million years estimated from a multi-proxy database of over 20,000 sea surface temperature point reconstructions. Global temperature gradually cooled until roughly 1.2 million years ago and cooling then stalled until the present. The cooling trend probably stalled before the beginning of the mid-Pleistocene transition, and pre-dated the increase in the maximum size of ice sheets around 0.9 million years ago. Thus, global cooling may have been a pre-condition for, but probably is not the sole causal mechanism of, the shift to quasi-100,000-year glacial cycles at the mid-Pleistocene transition. Over the past 800,000 years, polar amplification (the amplification of temperature change at the poles relative to global temperature change) has been stable over time, and global temperature and atmospheric greenhouse gas concentrations have been closely coupled across glacial cycles. A comparison of the new temperature reconstruction with radiative forcing from greenhouse gases estimates an Earth system sensitivity of 9 degrees Celsius (range 7 to 13 degrees Celsius, 95 per cent credible interval) change in global average surface temperature per doubling of atmospheric carbon dioxide over millennium timescales. This result suggests that stabilization at today’s greenhouse gas levels may already commit Earth to an eventual total warming of 5 degrees Celsius (range 3 to 7 degrees Celsius, 95 per cent credible interval) over the next few millennia as ice sheets, vegetation and atmospheric dust continue to respond to global warming.

---------------------

Extreme hydrological changes in the southwestern US drive reductions in water supply to Southern California by mid century

Brianna Pagán et al.

Environmental Research Letters, September 2016

Abstract:
The Southwestern United States has a greater vulnerability to climate change impacts on water security due to a reliance on snowmelt driven imported water. The State of California, which is the most populous and agriculturally productive in the United States, depends on an extensive artificial water storage and conveyance system primarily for irrigated agriculture, municipal and industrial supply and hydropower generation. Here we take an integrative high-resolution ensemble modeling approach to examine near term climate change impacts on all imported and local sources of water supply to Southern California. While annual precipitation is projected to remain the same or slightly increase, rising temperatures result in a shift towards more rainfall, reduced cold season snowpack and earlier snowmelt. Associated with these hydrological changes are substantial increases in the frequency and the intensity of both drier conditions and flooding events. The 50 year extreme daily maximum precipitation and runoff events are 1.5–6 times more likely to occur depending on the water supply basin. Simultaneously, a clear deficit in total annual runoff over mountainous snow generating regions like the Sierra Nevada is projected. On one hand, the greater probability of drought decreases imported water supply availability. On the other hand, earlier snowmelt and significantly stronger winter precipitation events pose increased flood risk requiring water releases from control reservoirs, which may potentially decrease water availability outside of the wet season. Lack of timely local water resource expansion coupled with projected climate changes and population increases may leave the area in extended periods of shortages.

---------------------

Centennial drought outlook over the CONUS using NASA-NEX downscaled climate ensemble

Ali Ahmadalipour, Hamid Moradkhani & Mark Svoboda

International Journal of Climatology, forthcoming

Abstract:
Drought is a natural hazard developing slowly and affecting large areas which may have severe consequences on society and economy. Due to the effects of climate change, drought is expected to exacerbate in various regions in future. In this study, the impact of climate change on drought characteristics is assessed, and statistical methods are employed to analyse the significance of projections. This is the first study utilizing 21 recently available downscaled global climate models generated by NASA (NEX-GDDP) to evaluate drought projections over various regions across the United States. Drought is investigated through a multi-model dual-index dual-scenario approach to probabilistically analyse drought attributes while characterizing the uncertainty in future drought projections. Standardized Precipitation Index and Standardized Precipitation Evapotranspiration Index values at the seasonal scale (3 months) are used to project and analyse meteorological drought conditions from 1950 to 2099 at 0.25° spatial resolution. Two future concentration pathways of RCP4.5 and RCP8.5 are considered for this analysis. Accounting for the combined effects of precipitation and temperature variations reveals a considerable aggravation in severity and extent of future drought in the western United States and a tendency toward more frequent and intense summer droughts across the Contiguous United States.

---------------------

Plant responses to increasing CO2 reduce estimates of climate impacts on drought severity

Abigail Swann et al.

Proceedings of the National Academy of Sciences, 6 September 2016, Pages 10019–10024

Abstract:
Rising atmospheric CO2 will make Earth warmer, and many studies have inferred that this warming will cause droughts to become more widespread and severe. However, rising atmospheric CO2 also modifies stomatal conductance and plant water use, processes that are often are overlooked in impact analysis. We find that plant physiological responses to CO2 reduce predictions of future drought stress, and that this reduction is captured by using plant-centric rather than atmosphere-centric metrics from Earth system models (ESMs). The atmosphere-centric Palmer Drought Severity Index predicts future increases in drought stress for more than 70% of global land area. This area drops to 37% with the use of precipitation minus evapotranspiration (P-E), a measure that represents the water flux available to downstream ecosystems and humans. The two metrics yield consistent estimates of increasing stress in regions where precipitation decreases are more robust (southern North America, northeastern South America, and southern Europe). The metrics produce diverging estimates elsewhere, with P-E predicting decreasing stress across temperate Asia and central Africa. The differing sensitivity of drought metrics to radiative and physiological aspects of increasing CO2 partly explains the divergent estimates of future drought reported in recent studies. Further, use of ESM output in offline models may double-count plant feedbacks on relative humidity and other surface variables, leading to overestimates of future stress. The use of drought metrics that account for the response of plant transpiration to changing CO2, including direct use of P-E and soil moisture from ESMs, is needed to reduce uncertainties in future assessment.

---------------------

Particulate air pollution from wildfires in the Western US under climate change

Jia Coco Liu et al.

Climatic Change, October 2016, Pages 655–666

Abstract:
Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM2.5) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004–2009) and future (2046–2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term “Smoke Wave,” defined as ≥2 consecutive days with high wildfire-specific PM2.5, to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004–2009, on days exceeding regulatory PM2.5 standards, wildfires contributed an average of 71.3 % of total PM2.5. Under future climate change, we estimate that more than 82 million individuals will experience a 57 % and 31 % increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.

---------------------

Land–atmosphere feedbacks amplify aridity increase over land under global warming

Alexis Berg et al.

Nature Climate Change, September 2016, Pages 869–874

Abstract:
The response of the terrestrial water cycle to global warming is central to issues including water resources, agriculture and ecosystem health. Recent studies indicate that aridity, defined in terms of atmospheric supply (precipitation, P) and demand (potential evapotranspiration, Ep) of water at the land surface, will increase globally in a warmer world. Recently proposed mechanisms for this response emphasize the driving role of oceanic warming and associated atmospheric processes. Here we show that the aridity response is substantially amplified by land–atmosphere feedbacks associated with the land surface’s response to climate and CO2 change. Using simulations from the Global Land Atmosphere Coupling Experiment (GLACE)-CMIP5 experiment, we show that global aridity is enhanced by the feedbacks of projected soil moisture decrease on land surface temperature, relative humidity and precipitation. The physiological impact of increasing atmospheric CO2 on vegetation exerts a qualitatively similar control on aridity. We reconcile these findings with previously proposed mechanisms by showing that the moist enthalpy change over land is unaffected by the land hydrological response. Thus, although oceanic warming constrains the combined moisture and temperature changes over land, land hydrology modulates the partitioning of this enthalpy increase towards increased aridity.

---------------------

The contribution of greenhouse gases to the recent slowdown in global-mean temperature trends

R. Checa-Garcia, K.P. Shine & M.I. Hegglin

Environmental Research Letters, September 2016

Abstract:
The recent slowdown in the rate of increase in global-mean surface temperature (GMST) has generated extensive discussion, but little attention has been given to the contribution of time-varying trends in greenhouse gas concentrations. We use a simple model approach to quantify this contribution. Between 1985 and 2003, greenhouse gases (including well-mixed greenhouse gases, tropospheric and stratospheric ozone, and stratospheric water vapour from methane oxidation) caused a reduction in GMST trend of around 0.03–0.05 K decade−1 which is around 18%–25% of the observed trend over that period. The main contributors to this reduction are the rapid change in the growth rates of ozone-depleting gases (with this contribution slightly opposed by stratospheric ozone depletion itself) and the weakening in growth rates of methane and tropospheric ozone radiative forcing. Although CO2 is the dominant greenhouse gas contributor to GMST trends, the continued increase in CO2 concentrations offsets only about 30% of the simulated trend reduction due to these other contributors. These results emphasize that trends in non-CO2 greenhouse gas concentrations can make significant positive and negative contributions to changes in the rate of warming, and that they need to be considered more closely in analyses of the causes of such variations.

---------------------

Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown

Doug Smith et al.

Nature Climate Change, October 2016, Pages 936–940

Abstract:
The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols. The prevailing view is that this negative PDO occurred through internal variability. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

---------------------

Anthropogenic impact on Antarctic surface mass balance, currently masked by natural variability, to emerge by mid-century

Michael Previdi & Lorenzo Polvani

Environmental Research Letters, August 2016

Abstract:
Global and regional climate models robustly simulate increases in Antarctic surface mass balance (SMB) during the twentieth and twenty-first centuries in response to anthropogenic global warming. Despite these robust model projections, however, observations indicate that there has been no significant change in Antarctic SMB in recent decades. We show that this apparent discrepancy between models and observations can be explained by the fact that the anthropogenic climate change signal during the second half of the twentieth century is small compared to the noise associated with natural climate variability. Using an ensemble of 35 global coupled climate models to separate signal and noise, we find that the forced SMB increase due to global warming in recent decades is unlikely to be detectable as a result of large natural SMB variability. However, our analysis reveals that the anthropogenic impact on Antarctic SMB is very likely to emerge from natural variability by the middle of the current century, thus mitigating future increases in global sea level.

---------------------

Pacific sea level rise patterns and global surface temperature variability

Cheryl Peyser et al.

Geophysical Research Letters, 28 August 2016, Pages 8662–8669

Abstract:
During 1998–2012, climate change and sea level rise (SLR) exhibit two notable features: a slowdown of global surface warming (hiatus) and a rapid SLR in the tropical western Pacific. To quantify their relationship, we analyze the long-term control simulations of 38 climate models. We find a significant and robust correlation between the east-west contrast of dynamic sea level (DSL) in the Pacific and global mean surface temperature (GST) variability on both interannual and decadal time scales. Based on linear regression of the multimodel ensemble mean, the anomalously fast SLR in the western tropical Pacific observed during 1998–2012 indicates suppression of a potential global surface warming of 0.16° ± 0.06°C. In contrast, the Pacific contributed 0.29° ± 0.10°C to the significant interannual GST increase in 1997/1998. The Pacific DSL anomalies observed in 2015 suggest that the strong El Niño in 2015/2016 could lead to a 0.21° ± 0.07°C GST jump.


Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.