Findings

Settled

Kevin Lewis

September 03, 2017

An early modern human presence in Sumatra 73,000–63,000 years ago
K.E. Westaway et al.
Nature, 17 August 2017, Pages 322–325

Abstract:
Genetic evidence for anatomically modern humans (AMH) out of Africa before 75 thousand years ago (ka) and in island southeast Asia (ISEA) before 60 ka (93–61 ka) predates accepted archaeological records of occupation in the region. Claims that AMH arrived in ISEA before 60 ka have been supported only by equivocal or non-skeletal evidence. AMH evidence from this period is rare and lacks robust chronologies owing to a lack of direct dating applications, poor preservation and/or excavation strategies and questionable taxonomic identifications. Lida Ajer is a Sumatran Pleistocene cave with a rich rainforest fauna associated with fossil human teeth. The importance of the site is unclear owing to unsupported taxonomic identification of these fossils and uncertainties regarding the age of the deposit, therefore it is rarely considered in models of human dispersal. Here we reinvestigate Lida Ajer to identify the teeth confidently and establish a robust chronology using an integrated dating approach. Using enamel–dentine junction morphology, enamel thickness and comparative morphology, we show that the teeth are unequivocally AMH. Luminescence and uranium-series techniques applied to bone-bearing sediments and speleothems, and coupled uranium-series and electron spin resonance dating of mammalian teeth, place modern humans in Sumatra between 73 and 63 ka. This age is consistent with biostratigraphic estimations, palaeoclimate and sea-level reconstructions, and genetic evidence for a pre-60 ka arrival of AMH into ISEA. Lida Ajer represents, to our knowledge, the earliest evidence of rainforest occupation by AMH, and underscores the importance of reassessing the timing and environmental context of the dispersal of modern humans out of Africa.


Languages in Drier Climates Use Fewer Vowels
Caleb Everett
Frontiers in Psychology, July 2017

Abstract:
This study offers evidence for an environmental effect on languages while relying on continuous linguistic and continuous ecological variables. Evidence is presented for a positive association between the typical ambient humidity of a language’s native locale and that language’s degree of reliance on vowels. The vowel-usage rates of over 4000 language varieties were obtained, and several methods were employed to test whether these usage rates are associated with ambient humidity. The results of these methods are generally consistent with the notion that reduced ambient humidity eventually yields a reduced reliance of languages on vowels, when compared to consonants. The analysis controls simultaneously for linguistic phylogeny and contact between languages. The results dovetail with previous work, based on binned data, suggesting that consonantal phonemes are more common in some ecologies. In addition to being based on continuous data and a larger data sample, however, these findings are tied to experimental research suggesting that dry air affects the behavior of the larynx by yielding increased phonatory effort. The results of this study are also consistent with previous work suggesting an interaction of aridity and tonality. The data presented here suggest that languages may evolve, like the communication systems of other species, in ways that are influenced subtly by ecological factors. It is stressed that more work is required, however, to explore this association and to establish a causal relationship between ambient air characteristics and the development of languages.


Adult sex ratios and partner scarcity among hunter–gatherers: Implications for dispersal patterns and the evolution of human sociality
Karen Kramer, Ryan Schacht & Adrian Bell
Philosophical Transactions of the Royal Society: Biological Sciences, 19 September 2017

Abstract:
Small populations are susceptible to high genetic loads and random fluctuations in birth and death rates. While these selective forces can adversely affect their viability, small populations persist across taxa. Here, we investigate the resilience of small groups to demographic uncertainty, and specifically to fluctuations in adult sex ratio (ASR), partner availability and dispersal patterns. Using 25 years of demographic data for two Savannah Pumé groups of South American hunter–gatherers, we show that in small human populations: (i) ASRs fluctuate substantially from year to year, but do not consistently trend in a sex-biased direction; (ii) the primary driver of local variation in partner availability is stochasticity in the sex ratio at maturity; and (iii) dispersal outside of the group is an important behavioural means to mediate locally constrained mating options. To then simulate conditions under which dispersal outside of the local group may have evolved, we develop two mathematical models. Model results predict that if the ASR is biased, the globally rarer sex should disperse. The model's utility is then evaluated by applying our empirical data to this central prediction. The results are consistent with the observed hunter–gatherer pattern of variation in the sex that disperses. Together, these findings offer an alternative explanation to resource provisioning for the evolution of traits central to human sociality (e.g. flexible dispersal, bilocal post-marital residence and cooperation across local groups). We argue that in small populations, looking outside of one's local group is necessary to find a mate and that, motivated by ASR imbalance, the alliances formed to facilitate the movement of partners are an important foundation for the human-typical pattern of network formation across local groups.


Early history of Neanderthals and Denisovans
Alan Rogers, Ryan Bohlender & Chad Huff
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
Extensive DNA sequence data have made it possible to reconstruct human evolutionary history in unprecedented detail. We introduce a method to study the past several hundred thousand years. Our results show that (i) the Neanderthal–Denisovan lineage declined to a small size just after separating from the modern lineage, (ii) Neanderthals and Denisovans separated soon thereafter, and (iii) the subsequent Neanderthal population was large and deeply subdivided. They also (iv) support previous estimates of gene flow from Neanderthals into modern Eurasians. These results suggest an archaic human diaspora early in the Middle Pleistocene.


Genetic origins of the Minoans and Mycenaeans
Iosif Lazaridis et al.
Nature, 10 August 2017, Pages 214–218

Abstract:
The origins of the Bronze Age Minoan and Mycenaean cultures have puzzled archaeologists for more than a century. We have assembled genome-wide data from 19 ancient individuals, including Minoans from Crete, Mycenaeans from mainland Greece, and their eastern neighbours from southwestern Anatolia. Here we show that Minoans and Mycenaeans were genetically similar, having at least three-quarters of their ancestry from the first Neolithic farmers of western Anatolia and the Aegean, and most of the remainder from ancient populations related to those of the Caucasus and Iran. However, the Mycenaeans differed from Minoans in deriving additional ancestry from an ultimate source related to the hunter–gatherers of eastern Europe and Siberia, introduced via a proximal source related to the inhabitants of either the Eurasian steppe or Armenia. Modern Greeks resemble the Mycenaeans, but with some additional dilution of the Early Neolithic ancestry. Our results support the idea of continuity but not isolation in the history of populations of the Aegean, before and after the time of its earliest civilizations.


Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.