Findings

Hot models

Kevin Lewis

March 05, 2014

Agreeing to disagree on climate policy

Geoffrey Heal & Antony Millner
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
Disagreements about the value of the utility discount rate — the rate at which our concern for the welfare of future people declines with their distance from us in time — are at the heart of the debate about the appropriate intensity of climate policy. Seemingly small differences in the discount rate yield very different policy prescriptions, and no consensus “correct” value has been identified. We argue that the choice of discount rate is an ethical primitive: there are many different legitimate opinions as to its value, and none should receive a privileged place in economic analysis of climate policy. Rather, we advocate a social choice-based approach in which a diverse set of individual discount rates is aggregated into a “representative” rate. We show that performing this aggregation efficiently leads to a time-dependent discount rate that declines monotonically to the lowest rate in the population. We apply this discounting scheme to calculations of the social cost of carbon recently performed by the US government and show that it provides an attractive compromise between competing ethical positions, and thus provides a possible resolution to the ethical impasse in climate change economics.

----------------------

Taming hurricanes with arrays of offshore wind turbines

Mark Jacobson, Cristina Archer & Willett Kempton
Nature Climate Change, March 2014, Pages 195–200

Abstract:
Hurricanes are causing increasing damage to many coastal regions worldwide. Offshore wind turbines can provide substantial clean electricity year-round, but can they also mitigate hurricane damage while avoiding damage to themselves? This study uses an advanced climate–weather computer model that correctly treats the energy extraction of wind turbines to examine this question. It finds that large turbine arrays (300+ GW installed capacity) may diminish peak near-surface hurricane wind speeds by 25–41 m s−1 (56–92 mph) and storm surge by 6–79%. Benefits occur whether turbine arrays are placed immediately upstream of a city or along an expanse of coastline. The reduction in wind speed due to large arrays increases the probability of survival of even present turbine designs. The net cost of turbine arrays (capital plus operation cost less cost reduction from electricity generation and from health, climate, and hurricane damage avoidance) is estimated to be less than today’s fossil fuel electricity generation net cost in these regions and less than the net cost of sea walls used solely to avoid storm surge damage.

----------------------

Crime, Weather, and Climate Change

Matthew Ranson
Journal of Environmental Economics and Management, forthcoming

Abstract:
This paper estimates the impact of climate change on the prevalence of criminal activity in the United States. The analysis is based on a 30-year panel of monthly crime and weather data for 2,997 U.S. counties. I identify the effect of weather on monthly crime by using a semi-parametric bin estimator and controlling for state-by-month and county-by-year fixed effects. The results show that temperature has a strong positive effect on criminal behavior, with little evidence of lagged impacts. Between 2010 and 2099, climate change will cause an additional 22,000 murders, 180,000 cases of rape, 1.2 million aggravated assaults, 2.3 million simple assaults, 260,000 robberies, 1.3 million burglaries, 2.2 million cases of larceny, and 580,000 cases of vehicle theft in the United States.

----------------------

Climate, conflict, and social stability: What does the evidence say?

Solomon Hsiang & Marshall Burke
Climatic Change, March 2014, Pages 39-55

Abstract:
Are violent conflict and socio-political stability associated with changes in climatological variables? We examine 50 rigorous quantitative studies on this question and find consistent support for a causal association between climatological changes and various conflict outcomes, at spatial scales ranging from individual buildings to the entire globe and at temporal scales ranging from an anomalous hour to an anomalous millennium. Multiple mechanisms that could explain this association have been proposed and are sometimes supported by findings, but the literature is currently unable to decisively exclude any proposed pathway. Several mechanisms likely contribute to the outcomes that we observe.

----------------------

Coastal flood damage and adaptation costs under 21st century sea-level rise

Jochen Hinkel et al.
Proceedings of the National Academy of Sciences, 4 March 2014, Pages 3292–3297

Abstract:
Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2–4.6% of global population is expected to be flooded annually in 2100 under 25–123 cm of global mean sea-level rise, with expected annual losses of 0.3–9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12–71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.

----------------------

Climate warming will not decrease winter mortality

Philip Staddon, Hugh Montgomery & Michael Depledge
Nature Climate Change, March 2014, Pages 190–194

Abstract:
It is widely assumed by policymakers and health professionals that the harmful health impacts of anthropogenic climate change will be partially offset by a decline in excess winter deaths (EWDs) in temperate countries, as winters warm. Recent UK government reports state that winter warming will decrease EWDs. Over the past few decades, however, the UK and other temperate countries have simultaneously experienced better housing, improved health care, higher incomes and greater awareness of the risks of cold. The link between winter temperatures and EWDs may therefore no longer be as strong as before. Here we report on the key drivers that underlie year-to-year variations in EWDs. We found that the association of year-to-year variation in EWDs with the number of cold days in winter ( <5 °C), evident until the mid 1970s, has disappeared, leaving only the incidence of influenza-like illnesses to explain any of the year-to-year variation in EWDs in the past decade. Although EWDs evidently do exist, winter cold severity no longer predicts the numbers affected. We conclude that no evidence exists that EWDs in England and Wales will fall if winters warm with climate change. These findings have important implications for climate change health adaptation policies.

----------------------

Big-Box Retailers and Urban Carbon Emissions: The Case of Wal-Mart

Matthew Kahn & Nils Kok
NBER Working Paper, February 2014

Abstract:
The commercial real estate sector is responsible for a large share of a city’s overall carbon footprint. An ongoing trend in this sector has been the entry of big-box stores such as Wal-Mart. Using a unique monthly panel data set for every Wal-Mart store in California from 2006 through 2011, we document three main findings about the environmental performance of big-box retailers. First, Wal-Mart’s stores exhibit very little store-to-store variation in electricity consumption relative to a control group of similar size and vintage retail stores. Second, Wal-Mart’s store’s electricity consumption is lower in higher priced utilities and is independent of the store’s ownership versus leased status. Third, unlike other commercial businesses, Wal-Mart’s newer buildings consume less electricity. Together, these results highlight the key roles that corporate size and centralization of management play in determining a key indicator of a firm’s overall environmental performance.

----------------------

Multimodel assessment of water scarcity under climate change

Jacob Schewe et al.
Proceedings of the National Academy of Sciences, 4 March 2014, Pages 3245–3250

Abstract:
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (<500 m3 per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 °C, whereas indicators of very severe impacts increase unabated beyond 2 °C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.

----------------------

Increasing stress on disaster-risk finance due to large floods

Brenden Jongman et al.
Nature Climate Change, forthcoming

Abstract:
Recent major flood disasters have shown that single extreme events can affect multiple countries simultaneously, which puts high pressure on trans-national risk reduction and risk transfer mechanisms. So far, little is known about such flood hazard interdependencies across regions and the corresponding joint risks at regional to continental scales. Reliable information on correlated loss probabilities is crucial for developing robust insurance schemes and public adaptation funds, and for enhancing our understanding of climate change impacts. Here we show that extreme discharges are strongly correlated across European river basins. We present probabilistic trends in continental flood risk, and demonstrate that observed extreme flood losses could more than double in frequency by 2050 under future climate change and socio-economic development. We suggest that risk management for these increasing losses is largely feasible, and we demonstrate that risk can be shared by expanding risk transfer financing, reduced by investing in flood protection, or absorbed by enhanced solidarity between countries. We conclude that these measures have vastly different efficiency, equity and acceptability implications, which need to be taken into account in broader consultation, for which our analysis provides a basis.

----------------------

On climate variability and civil war in Asia

Gerdis Wischnath & Halvard Buhaug
Climatic Change, February 2014, Pages 709-721

Abstract:
Effects of climate change are frequently claimed to be responsible for widespread civil violence. Yet, scientists remain divided on this issue, and recent studies suggest that conflict risk increases with higher rainfall, loss of rainfall, higher temperatures or none of the above. Lack of scientific consensus is driven by differences in data, methods, and samples, but may also reflect a fragile and inconsistent correlation for the habitual spatiotemporal domain, Sub-Saharan Africa post-1980. This study presents a comprehensive, multi-scale empirical evaluation of climate-conflict connections across Asia, the continent with the highest conflict rate per country. We find little evidence that interannual climate variability and anomalies are linked to historical conflict risk in the simple and general manner proposed by some earlier research. Although a significant parameter coefficient can be obtained under certain specifications, the direction and magnitude of the climate effects are inconsistent and sensitive to research design. Instead, Asian civil wars share central features with violent events elsewhere, proving the main correlates of contemporary armed conflict to be economic and socio-political rather than climatological.

----------------------

Harvesting renewable energy from Earth’s mid-infrared emissions

Steven Byrnes, Romain Blanchard & Federico Capasso
Proceedings of the National Academy of Sciences, forthcoming

Abstract:
It is possible to harvest energy from Earth's thermal infrared emission into outer space. We calculate the thermodynamic limit for the amount of power available, and as a case study, we plot how this limit varies daily and seasonally in a location in Oklahoma. We discuss two possible ways to make such an emissive energy harvester (EEH): A thermal EEH (analogous to solar thermal power generation) and an optoelectronic EEH (analogous to photovoltaic power generation). For the latter, we propose using an infrared-frequency rectifying antenna, and we discuss its operating principles, efficiency limits, system design considerations, and possible technological implementations.

----------------------

Heat stress increases long-term human migration in rural Pakistan

V. Mueller, C. Gray & K. Kosec
Nature Climate Change, March 2014, Pages 182–185

Abstract:
Human migration attributable to climate events has recently received significant attention from the academic and policy communities. Quantitative evidence on the relationship between individual, permanent migration and natural disasters is limited. A 21-year longitudinal survey conducted in rural Pakistan (1991–2012) provides a unique opportunity to understand the relationship between weather and long-term migration. We link individual-level information from this survey to satellite-derived measures of climate variability and control for potential confounders using a multivariate approach. We find that flooding — a climate shock associated with large relief efforts — has modest to insignificant impacts on migration. Heat stress, however — which has attracted relatively little relief — consistently increases the long-term migration of men, driven by a negative effect on farm and non-farm income. Addressing weather-related displacement will require policies that both enhance resilience to climate shocks and lower barriers to welfare-enhancing population movements.

----------------------

Simulations of Hurricane Katrina (2005) under sea level and climate conditions for 1900

Jennifer Irish et al.
Climatic Change, February 2014, Pages 635-649

Abstract:
Global warming may result in substantial sea level rise and more intense hurricanes over the next century, leading to more severe coastal flooding. Here, observed climate and sea level trends over the last century (c. 1900s to 2000s) are used to provide insight regarding future coastal inundation trends. The actual impacts of Hurricane Katrina (2005) in New Orleans are compared with the impacts of a similar hypothetical hurricane occurring c. 1900. Estimated regional sea level rise since 1900 of 0.75 m, which contains a dominant land subsidence contribution (0.57 m), serves as a ‘prototype’ for future climate-change induced sea level rise in other regions. Landform conditions c. 1900 were estimated by changing frictional resistance based on expected additional wetlands at lower sea levels. Surge simulations suggest that flood elevations would have been 15 to 60 % lower c. 1900 than the conditions observed in 2005. This drastic change suggests that significantly more flood damage occurred in 2005 than would have occurred if sea level and climate conditions had been like those c. 1900. We further show that, in New Orleans, sea level rise dominates surge-induced flooding changes, not only by increasing mean sea level, but also by leading to decreased wetland area. Together, these effects enable larger surges. Projecting forward, future global sea level changes of the magnitude examined here are expected to lead to increased flooding in coastal regions, even if the storm climate is unchanged. Such flooding increases in densely populated areas would presumably lead to more widespread destruction.

----------------------

Temperature, rainfall and economic growth in Africa

Matteo Lanzafame
Empirical Economics, February 2014, Pages 1-18

Abstract:
Following a recent line of research, this paper investigates the aggregated effects of temperature and rainfall on economic growth in Africa. Our econometric approach is based on a reduced-form model and takes account explicitly of parameter heterogeneity and cross section dependence, relying on ARDL modelling and panel estimators with multifactor structures. We find clear supportive evidence of short- and long-run relations between temperature and per-capita GDP growth, while the role played by rainfall appears to be less important and the evidence on its statistical significance is less clear-cut. Very similar results are reported when the analysis is carried out by focusing solely on Sub-Saharan African countries or considering GDP growth per worker. This evidence is in sharp contrast to the results obtained via standard MG estimation and this confirms that, by not controlling for cross section dependence, traditional panel estimators are likely to provide misleading inference. The empirical results suggest that, far from adapting quickly to weather shocks, African economies appear to be significantly damaged by them. In the absence of corrective measures, the current trends in climate change may impose a progressively heavier burden on African countries.

----------------------

Long-Term Effect of Climate Change on Health: Evidence from Heat Waves in Mexico

Jorge Agüero
University of Connecticut Working Paper, January 2014

Abstract:
This paper uses year-to-year variation in temperature to estimate the long-term effects of climate change on health outcomes in Mexico. Combining temperature data at the district level and three rounds of nationally representative household surveys, an individual’s health as an adult is matched with the history of heat waves from birth to adulthood. A flexible econometric model is used to identify critical health periods with respect to temperature. It is shown that exposure to higher temperatures early in life has negative consequences on adult height. Most importantly, the effects are concentrated at the times where children experience growth spurts: infancy and adolescence. The robustness of these findings is confirmed when using health outcomes derived from accidents, which are uncorrelated with early exposure to high temperatures.

----------------------

Optimal Taxes on Fossil Fuel in General Equilibrium

Mikhail Golosov et al.
Econometrica, January 2014, Pages 41–88

Abstract:
We analyze a dynamic stochastic general-equilibrium (DSGE) model with an externality — through climate change — from using fossil energy. Our central result is a simple formula for the marginal externality damage of emissions (or, equivalently, for the optimal carbon tax). This formula, which holds under quite plausible assumptions, reveals that the damage is proportional to current GDP, with the proportion depending only on three factors: (i) discounting, (ii) the expected damage elasticity (how many percent of the output flow is lost from an extra unit of carbon in the atmosphere), and (iii) the structure of carbon depreciation in the atmosphere. Thus, the stochastic values of future output, consumption, and the atmospheric CO2 concentration, as well as the paths of technology (whether endogenous or exogenous) and population, and so on, all disappear from the formula. We find that the optimal tax should be a bit higher than the median, or most well-known, estimates in the literature. We also formulate a parsimonious yet comprehensive and easily solved model allowing us to compute the optimal and market paths for the use of different sources of energy and the corresponding climate change. We find coal — rather than oil — to be the main threat to economic welfare, largely due to its abundance. We also find that the costs of inaction are particularly sensitive to the assumptions regarding the substitutability of different energy sources and technological progress.

----------------------

A quantitative evaluation of the public response to climate engineering

Malcolm Wright, Damon Teagle & Pamela Feetham
Nature Climate Change, February 2014, Pages 106–110

Abstract:
Atmospheric greenhouse gas concentrations continue to increase, with CO2 passing 400 parts per million in May 2013. To avoid severe climate change and the attendant economic and social dislocation, existing energy efficiency and emissions control initiatives may need support from some form of climate engineering. As climate engineering will be controversial, there is a pressing need to inform the public and understand their concerns before policy decisions are taken. So far, engagement has been exploratory, small-scale or technique-specific. We depart from past research to draw on the associative methods used by corporations to evaluate brands. A systematic, quantitative and comparative approach for evaluating public reaction to climate engineering is developed. Its application reveals that the overall public evaluation of climate engineering is negative. Where there are positive associations they favour carbon dioxide removal (CDR) over solar radiation management (SRM) techniques. Therefore, as SRM techniques become more widely known they are more likely to elicit negative reactions. Two climate engineering techniques, enhanced weathering and cloud brightening, have indistinct concept images and so are less likely to draw public attention than other CDR or SRM techniques.

----------------------

Rapid and extensive warming following cessation of solar radiation management

Kelly McCusker et al.
Environmental Research Letters, February 2014

Abstract:
Solar radiation management (SRM) has been proposed as a means to alleviate the climate impacts of ongoing anthropogenic greenhouse gas (GHG) emissions. However, its efficacy depends on its indefinite maintenance, without interruption from a variety of possible sources, such as technological failure or global cooperation breakdown. Here, we consider the scenario in which SRM — via stratospheric aerosol injection — is terminated abruptly following an implementation period during which anthropogenic GHG emissions have continued. We show that upon cessation of SRM, an abrupt, spatially broad, and sustained warming over land occurs that is well outside 20th century climate variability bounds. Global mean precipitation also increases rapidly following cessation, however spatial patterns are less coherent than temperature, with almost half of land areas experiencing drying trends. We further show that the rate of warming — of critical importance for ecological and human systems — is principally controlled by background GHG levels. Thus, a risk of abrupt and dangerous warming is inherent to the large-scale implementation of SRM, and can be diminished only through concurrent strong reductions in anthropogenic GHG emissions.

----------------------

Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

David Keller, Ellias Feng & Andreas Oschlies
Nature Communications, February 2014

Abstract:
The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited.

----------------------

Detection limits of albedo changes induced by climate engineering

Dian Seidel et al.
Nature Climate Change, February 2014, Pages 93–98

Abstract:
A key question surrounding proposals for climate engineering by increasing Earth's reflection of sunlight is the feasibility of detecting engineered albedo increases from short-duration experiments or prolonged implementation of solar-radiation management. We show that satellite observations permit detection of large increases, but interannual variability overwhelms the maximum conceivable albedo increases for some schemes. Detection of an abrupt global average albedo increase <0.002 (comparable to a ~0.7 W m−2 reduction in radiative forcing) would be unlikely within a year, given a five-year prior record. A three-month experiment in the equatorial zone (5° N–5° S), a potential target for stratospheric aerosol injection, would need to cause an ~0.03 albedo increase, three times larger than that due to the Mount Pinatubo eruption, to be detected. Detection limits for three-month experiments in 1° (latitude and longitude) regions of the subtropical Pacific, possible targets for cloud brightening, are ~0.2, which is larger than might be expected from some model simulations.

----------------------

Increased temperature variation poses a greater risk to species than climate warming

David Vasseur et al.
Proceedings of the Royal Society: Biological Sciences, 22 March 2014

Abstract:
Increases in the frequency, severity and duration of temperature extremes are anticipated in the near future. Although recent work suggests that changes in temperature variation will have disproportionately greater effects on species than changes to the mean, much of climate change research in ecology has focused on the impacts of mean temperature change. Here, we couple fine-grained climate projections (2050–2059) to thermal performance data from 38 ectothermic invertebrate species and contrast projections with those of a simple model. We show that projections based on mean temperature change alone differ substantially from those incorporating changes to the variation, and to the mean and variation in concert. Although most species show increases in performance at greater mean temperatures, the effect of mean and variance change together yields a range of responses, with temperate species at greatest risk of performance declines. Our work highlights the importance of using fine-grained temporal data to incorporate the full extent of temperature variation when assessing and projecting performance.

----------------------

Green means stop: Veto players and their impact on climate-change policy outputs

Nathan Madden
Environmental Politics, forthcoming

Abstract:
Political institutions can hinder the adoption of certain policies. Veto-players theory suggests that more political institutions in a state will lead to lower rates of policy adoption. Extending this argument to climate-change policy, I contend that more political institutions will lead to lower overall climate-policy adoption rates, lower adoption rates for cost-concentrated climate-policy tools, and lower adoption rates for significant climate policies. Using new data on climate policies and legislative passage rates in 23 OECD states between 1996 and 2010, I find empirical evidence demonstrating that the number of political institutions intrinsic to a state negatively affects climate-policy adoption.

----------------------

Potential greenhouse gas benefits of transatlantic wood pellet trade

Puneet Dwivedi et al.
Environmental Research Letters, February 2014

Abstract:
Power utility companies in the United Kingdom are using imported wood pellets from the southern region of the United States for electricity generation to meet the legally binding mandate of sourcing 15% of the nation's total energy consumption from renewable sources by 2020. This study ascertains relative savings in greenhouse gas (GHG) emissions for a unit of electricity generated using imported wood pellet in the United Kingdom under 930 different scenarios: three woody feedstocks (logging residues, pulpwood, and logging residues and pulpwood combined), two forest management choices (intensive and non-intensive), 31 plantation rotation ages (year 10 to year 40 in steps of 1 year), and five power plant capacities (20–100 MW in steps of 20 MW). Relative savings in GHG emissions with respect to a unit of electricity derived from fossil fuels in the United Kingdom range between 50% and 68% depending upon the capacity of power plant and rotation age. Relative savings in GHG emissions increase with higher power plant capacity. GHG emissions related to wood pellet production and transatlantic shipment of wood pellets typically contribute about 48% and 31% of total GHG emissions, respectively. Overall, use of imported wood pellets for electricity generation could help in reducing the United Kingdom's GHG emissions. We suggest that future research be directed to evaluation of the impacts of additional forest management practices, changing climate, and soil carbon on the overall savings in GHG emissions related to transatlantic wood pellet trade.

----------------------

Economic development and the carbon intensity of human well-being

Andrew Jorgenson
Nature Climate Change, March 2014, Pages 186–189

Abstract:
Humans use fossil fuels in various activities tied to economic development, leading to increases in carbon emissions, and economic development is widely recognized as a pathway to improving human well-being. Strategies for effective sustainability efforts require reducing the carbon intensity of human well-being (CIWB): the level of anthropogenic carbon emissions per unit of human well-being. Here I examine how the effect of economic development on CIWB has changed since 1970 for 106 countries in multiple regional samples throughout the world. I find that early in this time period, increased development led to a reduction in CIWB for nations in Africa, but in recent decades the relationship has changed, becoming less sustainable. For nations in Asia and South and Central America, I find that development increases CIWB, and increasingly so throughout the 40-year period of study. The effect of development on CIWB for nations in the combined regions of North America, Europe and Oceania has remained positive, relatively larger than in other regions, and stable through time. Although future economic growth will probably improve human well-being throughout the world, this research suggests that it will also cost an increasing amount of carbon emissions.

----------------------

Urban adaptation can roll back warming of emerging megapolitan regions

Matei Georgescu et al.
Proceedings of the National Academy of Sciences, 25 February 2014, Pages 2909–2914

Abstract:
Modeling results incorporating several distinct urban expansion futures for the United States in 2100 show that, in the absence of any adaptive urban design, megapolitan expansion, alone and separate from greenhouse gas-induced forcing, can be expected to raise near-surface temperatures 1–2 °C not just at the scale of individual cities but over large regional swaths of the country. This warming is a significant fraction of the 21st century greenhouse gas-induced climate change simulated by global climate models. Using a suite of regional climate simulations, we assessed the efficacy of commonly proposed urban adaptation strategies, such as green, cool roof, and hybrid approaches, to ameliorate the warming. Our results quantify how judicious choices in urban planning and design cannot only counteract the climatological impacts of the urban expansion itself but also, can, in fact, even offset a significant percentage of future greenhouse warming over large scales. Our results also reveal tradeoffs among different adaptation options for some regions, showing the need for geographically appropriate strategies rather than one size fits all solutions.

----------------------

Climate change effects on human health: Projections of temperature-related mortality for the UK during the 2020s, 2050s and 2080s

Shakoor Hajat et al.
Journal of Epidemiology & Community Health, forthcoming

Background: The most direct way in which climate change is expected to affect public health relates to changes in mortality rates associated with exposure to ambient temperature. Many countries worldwide experience annual heat-related and cold-related deaths associated with current weather patterns. Future changes in climate may alter such risks. Estimates of the likely future health impacts of such changes are needed to inform public health policy on climate change in the UK and elsewhere.

Methods: Time-series regression analysis was used to characterise current temperature-mortality relationships by region and age group. These were then applied to the local climate and population projections to estimate temperature-related deaths for the UK by the 2020s, 2050s and 2080s. Greater variability in future temperatures as well as changes in mean levels was modelled.

Results: A significantly raised risk of heat-related and cold-related mortality was observed in all regions. The elderly were most at risk. In the absence of any adaptation of the population, heat-related deaths would be expected to rise by around 257% by the 2050s from a current annual baseline of around 2000 deaths, and cold-related mortality would decline by 2% from a baseline of around 41 000 deaths. The cold burden remained higher than the heat burden in all periods. The increased number of future temperature-related deaths was partly driven by projected population growth and ageing.

Conclusions: Health protection from hot weather will become increasingly necessary, and measures to reduce cold impacts will also remain important in the UK. The demographic changes expected this century mean that the health protection of the elderly will be vital.

----------------------

Impacts of climate change on marine ecosystem production in societies dependent on fisheries

M. Barange et al.
Nature Climate Change, March 2014, Pages 211–216

Abstract:
Growing human populations and changing dietary preferences are increasing global demands for fish, adding pressure to concerns over fisheries sustainability. Here we develop and link models of physical, biological and human responses to climate change in 67 marine national exclusive economic zones, which yield approximately 60% of global fish catches, to project climate change yield impacts in countries with different dependencies on marine fisheries. Predicted changes in fish production indicate increased productivity at high latitudes and decreased productivity at low/mid latitudes, with considerable regional variations. With few exceptions, increases and decreases in fish production potential by 2050 are estimated to be <10% (mean +3.4%) from present yields. Among the nations showing a high dependency on fisheries, climate change is predicted to increase productive potential in West Africa and decrease it in South and Southeast Asia. Despite projected human population increases and assuming that per capita fish consumption rates will be maintained, ongoing technological development in the aquaculture industry suggests that projected global fish demands in 2050 could be met, thus challenging existing predictions of inevitable shortfalls in fish supply by the mid-twenty-first century. This conclusion, however, is contingent on successful implementation of strategies for sustainable harvesting and effective distribution of wild fish products from nations and regions with a surplus to those with a deficit. Changes in management effectiveness and trade practices will remain the main influence on realized gains or losses in global fish production.

----------------------

Radiative Forcing Caused by Rocket Engine Emissions

Martin Ross & Patti Sheaffer
Earth's Future, forthcoming

Abstract:
Space transportation plays an important and growing role in Earth's economic system. Rockets uniquely emit gases and particles directly into the middle and upper atmosphere where exhaust from hundreds of launches accumulates, changing atmospheric radiation patterns. The instantaneous radiative forcing (RF) caused by major rocket engine emissions CO2, H2O, black carbon (BC), and Al2O3 (alumina) are estimated. Rocket CO2 and H2O emissions do not produce significant RF. BC and alumina emissions, under some scenarios, have the potential to produce significant RF. Absorption of solar flux by BC is likely the main RF source from rocket launches. In a new finding, alumina particles, previously thought to cool the Earth by scattering solar flux back to space, absorbs outgoing terrestrial longwave radiation, resulting in net positive RF. With the caveat that BC and alumina microphysics are poorly constrained, we find that the present day RF from rocket launches equals 16 - 8 mWm-2. The relative contributions from BC, alumina, and H2O are 70%, 28%, and 2% respectively. The pace of rocket launches is predicted to grow and space transport RF could become comparable to global aviation RF in coming decades. Improved understanding of rocket emission RF requires more sophisticated modeling and improved data describing particle microphysics.

----------------------

Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus

Matthew England et al.
Nature Climate Change, March 2014, Pages 222–227

Abstract:
Despite ongoing increases in atmospheric greenhouse gases, the Earth’s global average surface air temperature has remained more or less steady since 2001. A variety of mechanisms have been proposed to account for this slowdown in surface warming. A key component of the global hiatus that has been identified is cool eastern Pacific sea surface temperature, but it is unclear how the ocean has remained relatively cool there in spite of ongoing increases in radiative forcing. Here we show that a pronounced strengthening in Pacific trade winds over the past two decades — unprecedented in observations/reanalysis data and not captured by climate models — is sufficient to account for the cooling of the tropical Pacific and a substantial slowdown in surface warming through increased subsurface ocean heat uptake. The extra uptake has come about through increased subduction in the Pacific shallow overturning cells, enhancing heat convergence in the equatorial thermocline. At the same time, the accelerated trade winds have increased equatorial upwelling in the central and eastern Pacific, lowering sea surface temperature there, which drives further cooling in other regions. The net effect of these anomalous winds is a cooling in the 2012 global average surface air temperature of 0.1–0.2 °C, which can account for much of the hiatus in surface warming observed since 2001. This hiatus could persist for much of the present decade if the trade wind trends continue, however rapid warming is expected to resume once the anomalous wind trends abate.

----------------------

Observational and Model based Trends and Projections of Extreme Precipitation over the Contiguous United States

Emily Janssen et al.
Earth's Future, forthcoming

Abstract:
Historical and projected trends in extreme precipitation events are examined in CMIP5 models and observations, over the contiguous United States (CONUS), using several approaches. This study updates earlier studies that have used the Extreme Precipitation Index (EPI) to assess observations and goes further by using the EPI to evaluate available climate model simulations. An increasing trend over the CONUS was found in the EPI, with large differences among seven sub-regions of the U.S. Median of CMIP5 simulations also finds an increasing trend in the EPI, but with a smaller magnitude than the observations. Model spread is large and in most cases bigger than the model signal itself. Statistically significant (95th confidence level) increasing trends in the observation-based EPI occur over the Midwest and Eastern regions, while most decreasing trends occur over Western regions. Some models give negative correlation coefficients relative to observations. However, some ensemble members, for most models, show correlation coefficients greater than 0.5. Projections of extreme precipitation event frequency, for Representative Concentration Pathway (RCP) scenarios 4.5 and 8.5, show increasing trends over the CONUS. Both scenarios give a steady increase throughout the period but the RCP 4.5 signal is smaller in magnitude. Overall, the RCP scenarios show an increase across all regions with the exception of some variability between decades in some regions for RCP 4.5. For the CONUS model spread is smaller than the projected signal. Regional analyses show overall agreement among models of a future increase in extreme precipitation event frequency over most regions.

----------------------

Seasonal Climate Variability and Change in the Pacific Northwest of the United States

John Abatzoglou, David Rupp & Philip Mote
Journal of Climate, March 2014, Pages 2125–2142

Abstract:
Observed changes in climate of the U.S. Pacific Northwest since the early twentieth century were examined using four different datasets. Annual mean temperature increased by approximately 0.6°–0.8°C from 1901 to 2012, with corroborating indicators including a lengthened freeze-free season, increased temperature of the coldest night of the year, and increased growing-season potential evapotranspiration. Seasonal temperature trends over shorter time scales (<50 yr) were variable. Despite increased warming rates in most seasons over the last half century, nonsignificant cooling was observed during spring from 1980 to 2012. Observations show a long-term increase in spring precipitation; however, decreased summer and autumn precipitation and increased potential evapotranspiration have resulted in larger climatic water deficits over the past four decades. A bootstrapped multiple linear regression model was used to better resolve the temporal heterogeneity of seasonal temperature and precipitation trends and to apportion trends to internal climate variability, solar variability, volcanic aerosols, and anthropogenic forcing. The El Niño–Southern Oscillation and the Pacific–North American pattern were the primary modulators of seasonal temperature trends on multidecadal time scales: solar and volcanic forcing were nonsignificant predictors and contributed weakly to observed trends. Anthropogenic forcing was a significant predictor of, and the leading contributor to, long-term warming; natural factors alone fail to explain the observed warming. Conversely, poor model skill for seasonal precipitation suggests that other factors need to be considered to understand the sources of seasonal precipitation trends.

----------------------

Volcanic contribution to decadal changes in tropospheric temperature

Benjamin Santer et al.
Nature Geoscience, March 2014, Pages 185–189

Abstract:
Despite continued growth in atmospheric levels of greenhouse gases, global mean surface and tropospheric temperatures have shown slower warming since 1998 than previously. Possible explanations for the slow-down include internal climate variability, external cooling influences and observational errors. Several recent modelling studies have examined the contribution of early twenty-first-century volcanic eruptions to the muted surface warming. Here we present a detailed analysis of the impact of recent volcanic forcing on tropospheric temperature, based on observations as well as climate model simulations. We identify statistically significant correlations between observations of stratospheric aerosol optical depth and satellite-based estimates of both tropospheric temperature and short-wave fluxes at the top of the atmosphere. We show that climate model simulations without the effects of early twenty-first-century volcanic eruptions overestimate the tropospheric warming observed since 1998. In two simulations with more realistic volcanic influences following the 1991 Pinatubo eruption, differences between simulated and observed tropospheric temperature trends over the period 1998 to 2012 are up to 15% smaller, with large uncertainties in the magnitude of the effect. To reduce these uncertainties, better observations of eruption-specific properties of volcanic aerosols are needed, as well as improved representation of these eruption-specific properties in climate model simulations.


Insight

from the

Archives

A weekly newsletter with free essays from past issues of National Affairs and The Public Interest that shed light on the week's pressing issues.

advertisement

Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.