Findings

Hot and bothered

Kevin Lewis

December 18, 2013

Conservative Protestantism and skepticism of scientists studying climate change

John Evans & Justin Feng
Climatic Change, December 2013, Pages 595-608

Abstract:
Politicians who proclaim both their skepticism about global warming and their conservative religious credentials leave the impression that conservative Protestants may be more skeptical about scientists’ claims regarding global warming than others. The history of the relationship between conservative Protestantism and science on issues such as evolution also suggests that there may be increased skepticism. Analyzing the 2006 and 2010 General Social Survey, we find no evidence that conservative Protestantism leads respondents to have less belief in the conclusiveness of climate scientists’ claims. However, a second type of skepticism of climate scientists is an unwillingness to follow scientists’ public policy recommendations. We find that conservative Protestantism does lead to being less likely to want environmental scientists to influence the public policy debate about what to do about climate change. Existing sociological research on the relationship between religion and science suggests that this stance is due to a long-standing social/moral competition between conservative Protestantism and science.

----------------------

Attenuating Initial Beliefs: Increasing the Acceptance of Anthropogenic Climate Change Information by Reflecting on Values

Anne-Marie van Prooijen & Paul Sparks
Risk Analysis, forthcoming

Abstract:
Anthropogenic climate change information tends to be interpreted against the backdrop of initial environmental beliefs, which can lead to some people being resistant toward the information. In this article (N = 88), we examined whether self-affirmation via reflection on personally important values could attenuate the impact of initial beliefs on the acceptance of anthropogenic climate change evidence. Our findings showed that initial beliefs about the human impact on ecological stability influenced the acceptance of information only among nonaffirmed participants. Self-affirmed participants who were initially resistant toward the information showed stronger beliefs in the existence of climate change risks and greater acknowledgment that individual efficacy has a role to play in reducing climate change risks than did their nonaffirmed counterparts.

----------------------

Feeling the Heat: Temperature, Physiology & the Wealth of Nations

Geoffrey Heal & Jisung Park
NBER Working Paper, December 2013

Abstract:
Does temperature affect economic performance? Has temperature always affected social welfare through its impact on physical and cognitive function? While many studies have explored the indirect links between climate and welfare (e.g. agricultural yield, violent conflict, or sea-level rise), few address the possibility of direct impacts operating through human physiology. This paper presents a model of labor supply under thermal stress, building on a longstanding physiological literature linking thermal stress to health and task performance. A key prediction is that effective labor supply – defined as a composite of labor hours, task performance, and effort – is decreasing in temperature deviations from the biological optimum. We use country-level panel data on population-weighted average temperature and income (1950-2005), to illustrate the potential magnitude of the effect. Using a fixed effects estimation strategy, we find that hotter-than-average years are associated with lower output per capita for already hot countries and higher output per capita for cold countries: approximately 3%-4% in both directions. We then use household data on air conditioning and heating expenditures from the US to provide further evidence in support of a physiologically based causal mechanism. This more direct causal link between climate and social welfare has important implications for both the economics of climate change and comparative development.

----------------------

Impacts of 21st century climate change on global air pollution-related premature mortality

Yuanyuan Fang et al.
Climatic Change, November 2013, Pages 239-253

Abstract:
Climate change modulates surface concentrations of fine particulate matter (PM2.5) and ozone (O3), indirectly affecting premature mortality attributed to air pollution. We estimate the change in global premature mortality and years of life lost (YLL) associated with changes in surface O3 and PM2.5 over the 21st century as a result of climate change. We use a global coupled chemistry-climate model to simulate current and future climate and the effect of changing climate on air quality. Epidemiological concentration-response relationships are applied to estimate resulting changes in premature mortality and YLL. The effect of climate change on air quality is isolated by holding emissions of air pollutants constant while allowing climate to evolve over the 21st century according to a moderate projection of greenhouse gas emissions (A1B scenario). Resulting changes in 21st century climate alone lead to an increase in simulated PM2.5 concentrations globally, and to higher (lower) O3 concentrations over populated (remote) regions. Global annual premature mortality associated with chronic exposure to PM2.5 increases by approximately 100 thousand deaths (95 % confidence interval, CI, of 66–130 thousand) with corresponding YLL increasing by nearly 900 thousand (95 % CI, 576–1,128 thousand) years. The annual premature mortality due to respiratory disease associated with chronic O3 exposure increases by +6,300 deaths (95 % CI, 1,600–10,400). This climate penalty indicates that stronger emission controls will be needed in the future to meet current air quality standards and to avoid higher health risks associated with climate change induced worsening of air quality over populated regions.

----------------------

Locked into Copenhagen pledges — Implications of short-term emission targets for the cost and feasibility of long-term climate goals

Keywan Riahi et al.
Technological Forecasting and Social Change, forthcoming

Abstract:
This paper provides an overview of the AMPERE modeling comparison project with focus on the implications of near-term policies for the costs and attainability of long-term climate objectives. Nine modeling teams participated in the project to explore the consequences of global emissions following the proposed policy stringency of the national pledges from the Copenhagen Accord and Cancún Agreements to 2030. Specific features compared to earlier assessments are the explicit consideration of near-term 2030 emission targets as well as the systematic sensitivity analysis for the availability and potential of mitigation technologies. Our estimates show that a 2030 mitigation effort comparable to the pledges would result in a further “lock-in” of the energy system into fossil fuels and thus impede the required energy transformation to reach low greenhouse-gas stabilization levels (450 ppm CO2e). Major implications include significant increases in mitigation costs, increased risk that low stabilization targets become unattainable, and reduced chances of staying below the proposed temperature change target of 2 °C in case of overshoot. With respect to technologies, we find that following the pledge pathways to 2030 would narrow policy choices, and increases the risks that some currently optional technologies, such as carbon capture and storage (CCS) or the large-scale deployment of bioenergy, will become “a must” by 2030.

----------------------

US biofuels subsidies and CO2 emissions: An empirical test for a weak and a strong green paradox

Quentin Grafton et al.
Energy Policy, forthcoming

Abstract:
Using energy data over the period 1981–2011 we find that US biofuels subsidies and production have provided a perverse incentive for US fossil fuel producers to increase their rate of extraction that has generated a weak green paradox. Further, in the short-run if the reduction in the CO2 emissions from a one-to-one substitution between biofuels and fossil fuels is less than 26 percent, or less than 57 percent if long run effect is taken into account, then US biofuels production is likely to have resulted in a strong green paradox. These results indicate that subsidies for first generation biofuels, which yield a low level of per unit CO2 emission reduction compared to fossil fuels, might have contributed to additional net CO2 emissions over the study period.

----------------------

Continued global warming after CO2 emissions stoppage

Thomas Lukas Frölicher, Michael Winton & Jorge Louis Sarmiento
Nature Climate Change, forthcoming

Abstract:
Recent studies have suggested that global mean surface temperature would remain approximately constant on multi-century timescales after CO2 emissions are stopped. Here we use Earth system model simulations of such a stoppage to demonstrate that in some models, surface temperature may actually increase on multi-century timescales after an initial century-long decrease. This occurs in spite of a decline in radiative forcing that exceeds the decline in ocean heat uptake — a circumstance that would otherwise be expected to lead to a decline in global temperature. The reason is that the warming effect of decreasing ocean heat uptake together with feedback effects arising in response to the geographic structure of ocean heat uptake overcompensates the cooling effect of decreasing atmospheric CO2 on multi-century timescales. Our study also reveals that equilibrium climate sensitivity estimates based on a widely used method of regressing the Earth’s energy imbalance against surface temperature change are biased. Uncertainty in the magnitude of the feedback effects associated with the magnitude and geographic distribution of ocean heat uptake therefore contributes substantially to the uncertainty in allowable carbon emissions for a given multi-century warming target.

----------------------

If Anthropogenic CO2 Emissions Cease, Will Atmospheric CO2 Concentration Continue to Increase?

Andrew MacDougall, Michael Eby & Andrew Weaver
Journal of Climate, December 2013, Pages 9563–9576

Abstract:
If anthropogenic CO2 emissions were to suddenly cease, the evolution of the atmospheric CO2 concentration would depend on the magnitude and sign of natural carbon sources and sinks. Experiments using Earth system models indicate that the overall carbon sinks dominate, such that upon the cessation of anthropogenic emissions, atmospheric CO2 levels decrease over time. However, these models have typically neglected the permafrost carbon pool, which has the potential to introduce an additional terrestrial source of carbon to the atmosphere. Here, the authors use the University of Victoria Earth System Climate Model (UVic ESCM), which has recently been expanded to include permafrost carbon stocks and exchanges with the atmosphere. In a scenario of zeroed CO2 and sulfate aerosol emissions, whether the warming induced by specified constant concentrations of non-CO2 greenhouse gases could slow the CO2 decline following zero emissions or even reverse this trend and cause CO2 to increase over time is assessed. It is found that a radiative forcing from non-CO2 gases of approximately 0.6 W m−2 results in a near balance of CO2 emissions from the terrestrial biosphere and uptake of CO2 by the oceans, resulting in near-constant atmospheric CO2 concentrations for at least a century after emissions are eliminated. At higher values of non-CO2 radiative forcing, CO2 concentrations increase over time, regardless of when emissions cease during the twenty-first century. Given that the present-day radiative forcing from non-CO2 greenhouse gases is about 0.95 W m−2, the results suggest that if all CO2 and aerosols emissions were eliminated without also decreasing non-CO2 greenhouse gas emissions CO2 levels would increase over time, resulting in a small increase in climate warming associated with this positive permafrost–carbon feedback.

----------------------

Conditional Cooperation and Climate Change

Dustin Tingley & Michael Tomz
Comparative Political Studies, forthcoming

Abstract:
It is widely believed that international cooperation can arise through strategies of reciprocity. In this paper, we investigate whether citizens in the United States and 25 other countries support reciprocity to deal with climate change. We find little public enthusiasm for intrinsic reciprocity, in which countries restrain their consumption of fossil fuels if and only if other countries do the same. In contrast, we find significant support for extrinsic reciprocity, in which countries enforce cooperation by linking issues. Citizens support economic sanctions against polluters and are willing to shame them in international forums, especially when the polluters are violating a treaty. Cooperation could, therefore, emerge from efforts to link climate with other issues and to embed climate commitments in international law.

----------------------

Can Negotiating a Uniform Carbon Price Help to Internalize the Global Warming Externality?

Martin Weitzman
NBER Working Paper, November 2013

Abstract:
Thus far, most approaches to resolving the global warming externality have been quantity based. With n different national entities, a meaningful comprehensive treaty involves negotiating n different binding emissions quotas (whether tradeable or not). In post-Kyoto practice this n-dimensional coordination problem has proven intractable and has essentially devolved into sporadic regional volunteerism. By contrast, on the price side there is a natural one-dimensional focus on negotiating a single binding carbon price, the proceeds from which are domestically retained. Significantly (and unlike negotiated quantities) the negotiated uniform price on carbon emissions embodies an automatic "countervailing force" against free-riding self interest by incentivizing agents to internalize the externality. The model of this paper indicates an exact sense in which each agent's extra cost from a higher emissions price is counter-balanced by that agent's extra benefit from inducing (via the higher emissions price) all other agents to simultaneously lower their emissions. With some further restrictions, the theoretical model shows that population-weighted majority rule for a uniform price on carbon emissions can come as close to global efficiency as the median marginal benefit (per capita) is close to the mean marginal benefit (per capita).

----------------------

The Role of Emotion in Global Warming Policy Support and Opposition

Nicholas Smith & Anthony Leiserowitz
Risk Analysis, forthcoming

Abstract:
Prior research has found that affect and affective imagery strongly influence public support for global warming. This article extends this literature by exploring the separate influence of discrete emotions. Utilizing a nationally representative survey in the United States, this study found that discrete emotions were stronger predictors of global warming policy support than cultural worldviews, negative affect, image associations, or sociodemographic variables. In particular, worry, interest, and hope were strongly associated with increased policy support. The results contribute to experiential theories of risk information processing and suggest that discrete emotions play a significant role in public support for climate change policy. Implications for climate change communication are also discussed.

----------------------

Can Carbon Taxes Be Progressive?

Yazid Dissou & Muhammad Shahid Siddiqui
Energy Economics, forthcoming

Abstract:
Most studies have assessed the distributional impact of carbon taxes through their effects on commodity prices alone, while ignoring their impact on individual welfare brought about by changes in factor prices. Yet, the remunerations of capital and labor are not affected by these taxes similarly, and their shares in earned incomes are not uniform across households. This paper provides a comprehensive analysis of the incidence of carbon taxes on inequality by considering simultaneously the commodity and the income channels. We propose a decomposition of the change in individual welfare metrics. Then, we develop a general equilibrium model to assess the impact of carbon taxes on factor and commodity prices, and subsequently their distributional impact on households, using the Lorenz and concentration curves and the Gini index. Our results suggest that changes in factor prices and changes in commodity prices (especially those of energy commodities) have opposing effects on inequality. Carbon taxes tend to reduce inequality through the changes in factor prices and tend to increase inequality through the changes in commodity prices. Hence, we find a non-monotonic (U-shaped) relationship between carbon taxes and inequality. Our results suggest that the traditional approach of assessing the impact of carbon taxes on inequality through changes in commodity prices alone may be misleading. The findings cast light on the desirability of using both channels in the assessment of carbon taxes on inequality.

----------------------

Expert assessment of sea-level rise by AD 2100 and AD 2300

Benjamin Horton et al.
Quaternary Science Reviews, 15 January 2014, Pages 1–6

Abstract:
Large uncertainty surrounds projections of global sea-level rise, resulting from uncertainty about future warming and an incomplete understanding of the complex processes and feedback mechanisms that cause sea level to rise. Consequently, existing models produce widely differing predictions of sea-level rise even for the same temperature scenario. Here we present results of a broad survey of 90 experts who were amongst the most active scientific publishers on the topic of sea level in recent years. They provided a probabilistic assessment of sea-level rise by AD 2100 and AD 2300 under two contrasting temperature scenarios. For the low scenario, which limits warming to <2 °C above pre-industrial temperature and has slowly falling temperature after AD 2050, the median ‘likely’ range provided by the experts is 0.4–0.6 m by AD 2100 and 0.6–1.0 m by AD 2300, suggesting a good chance to limit future sea-level rise to <1.0 m if climate mitigation measures are successfully implemented. In contrast, for the high warming scenario (4.5 °C by AD 2100 and 8 °C in AD 2300) the median likely ranges are 0.7–1.2 m by AD 2100 and 2.0–3.0 m by AD 2300, calling into question the future survival of some coastal cities and low-lying island nations.

----------------------

A geological perspective on sea-level rise and its impacts along the U.S. mid-Atlantic coast

Kenneth Miller et al.
Earth's Future, forthcoming

Abstract:
We evaluate paleo-, historical, and future sea-level rise along the U.S. mid-Atlantic coast. The rate of relative sea-level rise in New Jersey decreased from 3.5 ± 1.0 mm/yr at 7.5–6.5 ka, to 2.2 ± 0.8 mm/yr at 5.5–4.5 ka to a minimum of 0.9 ± 0.4 mm/yr at 3.3–2.3 ka. Relative sea level rose at a rate of 1.6 ± 0.1 mm/yr from 2.2 to 1.2 ka (750 Common Era [CE]) and 1.4 ± 0.1 mm/yr from 800 to 1800 CE. Geological and tide-gauge data show that sea-level rise was more rapid throughout the region since the Industrial Revolution (19th century = 2.7 ± 0.4 mm/yr; 20th century = 3.8 ± 0.2 mm/yr). There is a 95% probability that the 20th century rate of sea-level rise was faster than it was in any century in the last 4.3 kyr. These records reflect global rise (∼1.7 ± 0.2 mm/yr since 1880 CE) and subsidence from glacio-isostatic adjustment (∼1.3 ± 0.4 mm/yr) at bedrock locations (e.g., New York City). At coastal plain locations, the rate of rise is 0.3–1.3 mm/yr higher due to groundwater withdrawal and compaction. We construct 21st century relative sea-level rise scenarios including global, regional, and local processes. We project a 22 cm rise at bedrock locations by 2030 (central scenario; low- and high-end scenarios range of 16–38 cm), 40 cm by 2050 (range 28–65 cm), and 96 cm by 2100 (range 66–168 cm), with coastal plain locations having higher rises (3, 5–6, and 10–12 cm higher, respectively). By 2050 CE in the central scenario, a storm with a 10 year recurrence interval will exceed all historic storms at Atlantic City.

----------------------

Anthropogenic emissions of methane in the United States

Scot Miller et al.
Proceedings of the National Academy of Sciences, 10 December 2013, Pages 20018-20022

Abstract:
This study quantitatively estimates the spatial distribution of anthropogenic methane sources in the United States by combining comprehensive atmospheric methane observations, extensive spatial datasets, and a high-resolution atmospheric transport model. Results show that current inventories from the US Environmental Protection Agency (EPA) and the Emissions Database for Global Atmospheric Research underestimate methane emissions nationally by a factor of ∼1.5 and ∼1.7, respectively. Our study indicates that emissions due to ruminants and manure are up to twice the magnitude of existing inventories. In addition, the discrepancy in methane source estimates is particularly pronounced in the south-central United States, where we find total emissions are ∼2.7 times greater than in most inventories and account for 24 ± 3% of national emissions. The spatial patterns of our emission fluxes and observed methane–propane correlations indicate that fossil fuel extraction and refining are major contributors (45 ± 13%) in the south-central United States. This result suggests that regional methane emissions due to fossil fuel extraction and processing could be 4.9 ± 2.6 times larger than in EDGAR, the most comprehensive global methane inventory. These results cast doubt on the US EPA’s recent decision to downscale its estimate of national natural gas emissions by 25–30%. Overall, we conclude that methane emissions associated with both the animal husbandry and fossil fuel industries have larger greenhouse gas impacts than indicated by existing inventories.

----------------------

Arctic Sea Ice Reduction and Extreme Climate Events over the Mediterranean Region

Barbara Grassi, Gianluca Redaelli & Guido Visconti
Journal of Climate, December 2013, Pages 10101–10110

Abstract:
During the last decade, Arctic sea ice cover has experienced an accelerated decline that has been suggested to drive the increased occurrence of extremely cold winter events over continental Europe. Observations and modeling studies seem to support the idea that Mediterranean climate is also changing. In this work, the authors estimate potential effects on the Mediterranean Basin, during the winter period, of Arctic sea ice reduction. Two sets of simulations have been performed by prescribing different values of sea ice concentrations (50% and 20%) on the Barents–Kara Seas in the NCAR Community Atmosphere Model, version 3 (CAM3), as representative of idealized present and future sea ice conditions. Global model simulations have then been used to run the Abdus Salam International Centre for Theoretical Physics (ICTP) Regional Climate Model, version 4 (RegCM4), over central Europe and the Mediterranean domain. Simulations provide evidence for a large-scale atmospheric circulation response to sea ice reduction, resembling the negative phase of the Arctic Oscillation (AO) and characterized by a wave activity flux from the North Atlantic toward the Mediterranean Basin, during winter months. An increase in the occurrence and intensity of extreme cold events, over continental Europe, and extreme precipitation events, over the entire Mediterranean Basin, was found. In particular, simulations suggest an increased risk of winter flooding in southern Italy, Greece, and the Iberian Peninsula.

----------------------

Water–CO2 trade-offs in electricity generation planning

Mort Webster, Pearl Donohoo & Bryan Palmintier
Nature Climate Change, December 2013, Pages 1029–1032

Abstract:
In 2011, the state of Texas experienced the lowest annual rainfall on record, with similar droughts affecting East Africa, China and Australia. Climate change is expected to further increase the likelihood and severity of future droughts. Simultaneously, population and industrial growth increases demand for drought-stressed water resources and energy, including electricity. In the US, nearly half of water withdrawals are for electricity generation, much of which comes from greenhouse gas emitting fossil fuel combustion. The result is a three-way tension among efforts to meet growing energy demands while reducing greenhouse gas emissions and water withdrawals, a critical issue within the so-called water–energy nexus. We focus on this interaction within the electric sector by using a generation expansion planning model to explore the trade-offs. We show that large reductions in CO2 emissions would probably increase water withdrawals for electricity generation in the absence of limits on water usage, and that simultaneous restriction of CO2 emissions and water withdrawals requires a different mix of energy technologies and higher costs than one would plan to reduce either CO2 or water alone.

----------------------

The green paradox of the economics of exhaustible resources

Robert Cairns
Energy Policy, February 2014, Pages 78–85

Abstract:
The green paradox states that an increasing tax on emissions of carbon dioxide, consonant with the expected increase in their marginal damages, may induce oil producers to shift their production toward the present and thereby to exacerbate the problem of climatic change. The model is based on Hotelling models of resource use that do not take the natural and technical features of oil production into account. Natural features include the decline of production through time according to a decline curve. Technical features include the requirement to sink investment in productive capacity. A model of a profit-maximizing firm indicates that, if these features are taken into account, the prediction of the green paradox is unlikely.

----------------------

An apparent hiatus in global warming?

Kevin Trenberth & John Fasullo
Earth's Future, forthcoming

Abstract:
Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s. Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5–1 W m−2 over the 2000s. Annual global fluctuations in TOA energy of up to 0.2 W m−2 occur from natural variations in clouds, aerosols, and changes in the Sun. At times of major volcanic eruptions the effects can be much larger. Yet global mean surface temperatures fluctuate much more than these can account for. An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976–1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

----------------------

Projected Changes in Late-Twenty-First-Century Tropical Cyclone Frequency in 13 Coupled Climate Models from Phase 5 of the Coupled Model Intercomparison Project

K.J. Tory et al.
Journal of Climate, December 2013, Pages 9946–9959

Abstract:
Changes in tropical cyclone (TC) frequency under anthropogenic climate change are examined for 13 global models from phase 5 of the Coupled Model Intercomparison Project (CMIP5), using the Okubo–Weiss–Zeta parameter (OWZP) TC-detection method developed by the authors in earlier papers. The method detects large-scale conditions within which TCs form. It was developed and tuned in atmospheric reanalysis data and then applied without change to the climate models to ensure model and detector independence. Changes in TC frequency are determined by comparing TC detections in the CMIP5 historical runs (1970–2000) with high emission scenario (representative concentration pathway 8.5) future runs (2070–2100). A number of the models project increases in frequency of higher-latitude tropical cyclones in the late twenty-first century. Inspection reveals that these high-latitude systems were subtropical in origin and are thus eliminated from the analysis using an objective classification technique. TC detections in 8 of the 13 models reproduce observed TC formation numbers and geographic distributions reasonably well, with annual numbers within ±50% of observations. TC detections in the remaining five models are particularly low in number (10%–28% of observed). The eight models with a reasonable TC climatology all project decreases in global TC frequency varying between 7% and 28%. Large intermodel and interbasin variations in magnitude and sign are present, with the greatest variations in the Northern Hemisphere basins. These results are consistent with results from earlier-generation climate models and thus confirm the robustness of coupled model projections of globally reduced TC frequency.

----------------------

Trade of woody biomass for electricity generation under climate mitigation policy

Alice Favero & Emanuele Massetti
Resource and Energy Economics, forthcoming

Abstract:
Bio-energy with carbon capture and sequestration (BECCS) has the potential to be a key mitigation option, because it can generate electricity and absorb emissions at the same time. However, biomass is not distributed evenly across the globe and regions with a potentially high demand might be constrained by limited domestic supply. Therefore, climate mitigation policies might create the incentive to trade biomass internationally. This paper uses scenarios generated by the integrated assessment model WITCH to study trade of woody biomass from multiple perspectives: the volume of biomass traded, its value, the impact on other power generation technologies and on the efficiency of mitigation policy. The policy scenarios consist of three representative carbon tax policies (4.8 W/m2, 3.8 W/m2 and 3.2 W/m2 radiative forcing values in 2100) and a cap-and-trade scheme (3.8 W/m2 in 2100). Results show that the incentive to trade biomass is high: at least 50% of biomass consumed globally is traded internationally. Regions trade 13-69 EJ/yr of woody biomass in 2050 and 55-81 EJ/yr in 2100. In 2100 the value of biomass traded is equal to US$ 0.7-7.2 Trillion. Trade of woody biomass substantially increases the efficiency of the mitigation policy. In the tax scenarios, abatement increases by 120-323 Gt CO2 over the century. In the cap-and-trade scenario biomass trade reduces the price of emission allowances by 34% in 2100 and cumulative discounted policy costs by 14%.


Sign-in to your National Affairs subscriber account.


Already a subscriber? Activate your account.


subscribe

Unlimited access to intelligent essays on the nation’s affairs.

SUBSCRIBE
Subscribe to National Affairs.